12 research outputs found

    Pulsar Spin-Velocity Alignment: Kinematic Ages, Birth Periods and Braking Indices

    Full text link
    This paper presents a detailed investigation of the dependence of pulsar spin-velocity alignment, which has been observed for a sample of 58 pulsars, on pulsar age. At first, our study considers only pulsar characteristic ages, resulting in no change in the degree of correlation as a function of age, up to at least 100 Myr. Subsequently, we consider a more reliable estimate of pulsar age, the kinematic age, assuming that pulsars are born near the Galactic plane. We derive kinematic ages for 52 pulsars, based on the measured pulsar proper motions and positions, by modelling the trajectory of the pulsars in a Galactic potential. The sample of 52 pulsar kinematic ages constitutes the largest number of independently estimated pulsar ages to date. Using only the 33 most reliable kinematic ages from our simulations, we revisit the evolution of spin- velocity alignment, this time as a function of kinematic age. We find that the strong correlation seen in young pulsars is completely smeared out for pulsars with kinematic ages above 10 Myr, a length of time beyond which we expect the gravitational pull of the Galaxy to have a significant effect on the directions of pulsar velocities. In the discussion, we investigate the impact of large distance uncertainties on the reliability of the calculated kinematic ages. Furthermore, we present a detailed investigation of the implications of our revised pulsar ages for the braking-index and birth-period distributions. Finally, we discuss the predictions of various SN-kick mechanisms and their compatibility with our results.Comment: 24 pages, 19 figures, MNRAS accepte

    Statistical properties of Faraday rotation measure from large-scale magnetic fields in intervening disc galaxies

    Full text link
    To constrain the large-scale magnetic field strengths in cosmologically distant galax- ies, we derive the probability distribution function of Faraday rotation measure (RM) when random lines of sight pass through a sample of disc galaxies, with axisymmetric large-scale magnetic fields. We find that the width of the RM distribution of the galaxy sample is directly related to the mean large-scale field strength of the galaxy population, provided the dispersion within the sample is lower than the mean value. In the absence of additional constraints on parameters describing the magneto-ionic medium of the intervening galaxies, and in the situation where RMs produced in the intervening galaxies have already been statistically isolated from other RM contributions along the lines of sight, our simple model of the magneto-ionic medium in disc galaxies suggests that the mean large-scale magnetic field of the population can be measured to within ~ 50% accuracy.Comment: 4 pages, Proceedings of FM8 "New Insights in Extragalactic Magnetic Fields", XXXth General Assembly of the IAU, Vienna, August 20-31, 201

    Faraday tomography of the Galactic ISM with the WSRT

    Get PDF
    In this thesis I use the novel technique of Rotation Measure synthesis (RMS) to study the Galactic interstellar medium. With RMS we can study Faraday rotation and synchrotron emission along the line of sight. I apply RMS to 4 data sets that we obtained with the WSRT. With RMS we can separate the signal of a polarized extragalactic source from the signal from our own Milky Way. Depending on the viewing direction in the Milky Way, the rotation measures of extragalactic sources and diffuse emission (dis)agree. We supplement our observations with MHD simulations of the Galactic ISM, to better understand how we can interpret the observed features as structure in the Galactic ISM and the Galactic magnetic field. Finally, we combined our results with literature values on pulsars, extragalactic sources, and the diffuse emission. We found a way to calculate the electron-density weighted line-of-sight magnetic field strength from the RM and DM that we can either measure or model for these sources. With all this information we determined that the large-scale magnetic field in the second Galactic quadrant shows much more structure than what the currently best available model can predict

    An In-Depth Investigation of Faraday Depth Spectrum Using Synthetic Observations of Turbulent MHD Simulations

    Get PDF
    Basu A, Fletcher A, Mao SA, Burkhart B, Beck R, Schnitzeler D. An In-Depth Investigation of Faraday Depth Spectrum Using Synthetic Observations of Turbulent MHD Simulations. GALAXIES. 2019;7(4): 89.In this paper, we present a detailed analysis of the Faraday depth (FD) spectrum and its clean components obtained through the application of the commonly used technique of Faraday rotation measure synthesis to analyze spectro-polarimetric data. To directly compare the Faraday depth spectrum with physical properties of a magneto-ionic medium, we generated synthetic broad-bandwidth spectro-polarimetric observations from magnetohydrodynamic (MHD) simulations of a transonic, isothermal, compressible turbulent medium. We find that correlated magnetic field structures give rise to a combination of spiky, localized peaks at certain FD values, and broad structures in the FD spectrum. Although most of these spiky FD structures appear narrow, giving an impression of a Faraday thin medium, we show that they arise from strong synchrotron emissivity at that FD. Strong emissivity at a FD can arise because of both strong spatially local polarized synchrotron emissivity at a FD or accumulation of weaker emissions along the distance through a medium that have Faraday depths within half the width of the rotation measure spread function. Such a complex Faraday depth spectrum is a natural consequence of MHD turbulence when the lines of sight pass through a few turbulent cells. This therefore complicates the convention of attributing narrow FD peaks to the presence of a Faraday-rotating medium along the line of sight. Our work shows that it is difficult to extract the FD along a line of sight from the Faraday depth spectrum using standard methods for a turbulent medium in which synchrotron emission and Faraday rotation occur simultaneously

    Infrared-Faint Radio Sources: A New Population of High-redshift Radio Galaxies

    Full text link
    We present a sample of 1317 Infrared-Faint Radio Sources (IFRSs) that, for the first time, are reliably detected in the infrared, generated by cross-correlating the Wide-Field Infrared Survey Explorer (WISE) all-sky survey with major radio surveys. Our IFRSs are brighter in both radio and infrared than the first generation IFRSs that were undetected in the infrared by the Spitzer Space Telescope. We present the first spectroscopic redshifts of IFRSs, and find that all but one of the IFRSs with spectroscopy has z > 2. We also report the first X-ray counterparts of IFRSs, and present an analysis of radio spectra and polarization, and show that they include Gigahertz-Peaked Spectrum, Compact Steep Spectrum, and Ultra-Steep Spectrum sources. These results, together with their WISE infrared colours and radio morphologies, imply that our sample of IFRSs represents a population of radio-loud Active Galactic Nuclei at z > 2. We conclude that our sample consists of lower-redshift counterparts of the extreme first generation IFRSs, suggesting that the fainter IFRSs are at even higher redshift.Comment: 23 pages, 17 figures. Submitted to MNRA

    Estimating extragalactic Faraday rotation

    Get PDF
    (abridged) Observations of Faraday rotation for extragalactic sources probe magnetic fields both inside and outside the Milky Way. Building on our earlier estimate of the Galactic contribution, we set out to estimate the extragalactic contributions. We discuss the problems involved; in particular, we point out that taking the difference between the observed values and the Galactic foreground reconstruction is not a good estimate for the extragalactic contributions. We point out a degeneracy between the contributions to the observed values due to extragalactic magnetic fields and observational noise and comment on the dangers of over-interpreting an estimate without taking into account its uncertainty information. To overcome these difficulties, we develop an extended reconstruction algorithm based on the assumption that the observational uncertainties are accurately described for a subset of the data, which can overcome the degeneracy with the extragalactic contributions. We present a probabilistic derivation of the algorithm and demonstrate its performance using a simulation, yielding a high quality reconstruction of the Galactic Faraday rotation foreground, a precise estimate of the typical extragalactic contribution, and a well-defined probabilistic description of the extragalactic contribution for each data point. We then apply this reconstruction technique to a catalog of Faraday rotation observations. We vary our assumptions about the data, showing that the dispersion of extragalactic contributions to observed Faraday depths is most likely lower than 7 rad/m^2, in agreement with earlier results, and that the extragalactic contribution to an individual data point is poorly constrained by the data in most cases.Comment: 20 + 6 pages, 19 figures; minor changes after bug-fix; version accepted for publication by A&A; results are available at http://www.mpa-garching.mpg.de/ift/faraday

    Measuring magnetism in the Milky Way with the Square Kilometre Array

    Get PDF
    Magnetic fields in the Milky Way are present on a wide variety of sizes and strengths, influencing many processes in the Galactic ecosystem such as star formation, gas dynamics, jets, and evolution of supernova remnants or pulsar wind nebulae. Observation methods are complex and indirect; the most used of these are a grid of rotation measures of unresolved polarized extragalactic sources, and broadband polarimetry of diffuse emission. Current studies of magnetic fields in the Milky Way reveal a global spiral magnetic field with a significant turbulent component; the limited sample of magnetic field measurements in discrete objects such as supernova remnants and HII regions shows a wide variety in field configurations; a few detections of magnetic fields in Young Stellar Object jets have been published; and the magnetic field structure in the Galactic Center is still under debate. The SKA will unravel the 3D structure and configurations of magnetic fields in the Milky Way on sub-parsec to galaxy scales, including field structure in the Galactic Center. The global configuration of the Milky Way disk magnetic field, probed through pulsar RMs, will resolve controversy about reversals in the Galactic plane. Characteristics of interstellar turbulence can be determined from the grid of background RMs. We expect to learn to understand magnetic field structures in protostellar jets, supernova remnants, and other discrete sources, due to the vast increase in sample sizes possible with the SKA. This knowledge of magnetic fields in the Milky Way will not only be crucial in understanding of the evolution and interaction of Galactic structures, but will also help to define and remove Galactic foregrounds for a multitude of extragalactic and cosmological studies.Comment: 19 pages, 2 figures; to appear as part of 'Cosmic Magnetism' in Proceedings 'Advancing Astrophysics with the SKA (AASKA14)', PoS(AASKA14)09

    Electrons in the supernova-driven interstellar medium

    No full text
    Context. Interstellar gas is in a highly turbulent dynamic state driven by successive supernova explosions and stellar winds, while its electron distribution is determined by microscopic processes such as ionization and recombination. In order to understand the properties of the electrons in the interstellar medium (ISM) it is necessary to follow numerically the nonlinear spatial and temporal evolution of the gas, its ionization structure, and its emission properties. Aims. We study the time evolution of the electrons in the ISM and how line of sight observations compare to volume analysis of the simulated medium populated with atoms and ions of the ten most abundant species. In particular, we make quantitative predictions about the occupation fractions and averaged densities of electrons, the dispersion measures, and their vantage point dependence. Methods. We carried out state-of-the-art adaptive mesh refinement simulations of the supernova-driven interstellar gas tracing the evolution of 112 ions and atoms of H, He, C, N, O, Ne, Mg, Si, S, and Fe and their emissivities in a time-dependent fashion. The gas is followed with the magnetohydrodynamical adaptive mesh refinement parallel code coupled with the Collisional + Photo Ionization Plasma Emission Software to trace the ionic structure and radiative emission of the plasma. Results. We show that more than 60% of the electrons are in thermally unstable regimes: about 50% at 200 < T ≤ 103.9 K and 14% at 104.2 < T ≤ 105.5 K. The probability density functions for the electron distribution in different temperature regimes is rather broad, also a result of turbulence in the ISM. Comparing the calculated dispersion measures along different lines of sight to observation, we find a very good agreement. They increase linearly for distances greater than 300 pc from the observer at an average rate of 27 cm−3 pc per kpc. The dispersion regarding the average dispersion measures does not decrease with distance along the line of sight, pointing to a high clumpiness of the electrons and of the turbulent ISM. The mean electron density in the Galactic midplane derived from the volume analysis varies between 0.029 and 0.031 cm−3, while that derived from the dispersion measures, varies between 0.0264 and 0.03 cm−3 depending on the vantage point and on the time averaged period. These variations can be as high as 8.3% between vantage points
    corecore